Thursday, October 19, 2006

So you are going to FOCS

FOCS in Berkeley starts in a few days. Here is some unsolicited advice.

The weather is going to be mild and sunny, but you are not going to wear shorts and sandals. And if you plan to go see the Golden Gate bridge, you want to carry some warm clothes with you.

There is no hotel in downtown Berkeley that is large enough to host FOCS, so the conference will be at a hotel by the bay which is somewhat far from the town center. There are places to walk to from the hotel, and there is public transportation, but it is still worth renting a car, because it will make dinner plans simpler.

Before driving to San Francisco, you can check traffic information on You can even see the traffic on the highway in real time via webcams. You can also go to San Francisco via the bart, a subway system. The public transportation system in San Francisco is called muni.

The San Francisco Bay Area is known for its food and its coffee shops; have fun trying a different place each night.

Check out to see what's going on in the city during the weekend.

Among other events, this weekend will be the third weekend of Open Studios, an opportunity to visit the studios of local artists, which are not otherwise open to the public. And let's not forget the unique opportunity to meet Crispin Glover in person!

San Francisco does not have the museum scene of New York or of a European capital, but it has a number of interesting destinations. Unique to San Francisco is the recently opened Asian Art Museum, the largest such in the West. The De Young museum in Golden Gate park (which is nowhere close to the Golden Gate bridge) reopened last year after a long renovation. The Palace of the Legion of Honor hosts a fine art museum which is all right, but its main attraction is the fantastic view of the bay that you get from the garden. The SF MOMA is hosted in a very beautiful contemporary building.

One of the best parties in town is Popscene, feauturing Brit-pop and "indie" music, but it's on Thursdays. When it comes to San Francisco values, one of my favorite parties is Trannyshack, which is on Tuesdays. At other places, a drag show is often meant to be a man in a dress lip-synching to a Cher song. Nothing like this goes on at Trannyshack, a San Francisco institution that was the subject of a documentary. There, drag is an excuse for perfomances that can be highly conceptual, purely silly, outright offensive, or just bizarre depending on the performer. One night I was there the theme was punk rock, and there was this 6+ foot tall performer dressed like a punk girl singing a song I did not recognize, while the audience was having fun pogoing. At one point the performer tried to stage dive, but everybody just jumped out of his way (he was big), and he landed on the floor face first. This Tuesday night the theme will be vampires.

For more nightlife events, see or here.

Wednesday, October 18, 2006

The limitations of linear and semidefinite programming

The fact that Linear Programming (LP) can be solved in polynomial time (and, also, efficiently in practice) and that it has such a rich geometric theory and such remarkable expressive power makes LP a powerful unifying concept in the theory of algorithms. It "explains" the existence of polynomial time algorithms for problems such as Shortest Paths and Min Cut, and if one thinks of the combinatorial algorithms for such problems as algorithms for the corresponding linear programs, one gains additional insights.

When looking for algorithms for a new combinatorial problem, a possible approach is to express the problem as a 0/1 integer program, then relax it to a linear program, by letting variables range between 0 and 1, and then hope for the best. "The best" being the lucky event that the value of the optimum of the relaxation is the same as that of the combinatorial program, or at least a close approximation. If one finds that, instead, the relaxation has optimal fractional solutions of cost very different from the combinatorial optimum, one may try to add further inequalities that are valid for 0/1 solutions and that rule out the problematic fractional solutions.

Many "P=NP" papers follow this approach, usually by presenting a polynomial-size linear programming relaxation of TSP and then "proving" that the optimum of the relaxation is the same as the combinatorial optimum. One can find recent examples here and here.

Similar results were "proved" in a notorious series of paper by Ted Swart in the mid 1980s. After counterexamples were found, he would revise the paper adding more inequalities that would rule out the counterexample.

Finally, Mihalis Yannakakis took matters into his own hands and proved that all "symmetric" relaxations of TSP of sub-exponential size have counterexamples on which the optimum of the relaxation is different from the combinatorial optimum. (All of the LPs suggested by Swart where "symmetric" according to Yannakakis's definition.)

This is actually one of the few known lower bounds that actually applies to a "model of computation" capturing a general (and otherwise promising) class of algorithms.

(I first read about this story in Christos Papadimitriou's complexity book, but I found the above references in Gerhard J Woeginger's P versus NP page.)

In the theory of approximation algorithms, we have plenty of problems that are believed to be intractable but that are not known to be NP-hard, such as approximating Vertex Cover within a factor of 1.9, or approximating Sparsest Cut within a factor of 10. LP and Semidefinite Programming (SDP) approaches are more or less the only promising tools we have to prove that such problems are tractable and, while we wait for NP-hardness result (for now, we only have "Unique-Games-hardness"), it is good to see whether certain candidate LP and SDP algorithms have any chance, or if they admit counterexamples showing large gaps between the optimum of the relaxation and the combinatorial optimum.

The problem with this approach is the nearly endless variety of relaxations that one can consider: what happens when we add triangle inequalities? and pentagonal inequalities? and so on. As in the case of Yannakakis's result, it would be great to have a result that says "all SDP relaxations of Vertex Cover of type X fail to achieve an approximation ratio smaller than 2," where "type X" is a general class of sub-exponential size SDP relaxations that include the type of inequalities that people use "in practice."

Lovasz and Schrijver describe a method, denoted LS+, that starts from an LP relaxation of a problem (actually it can start from any convex relaxation), and then turns it into tighter and tighter SDP relaxations, by adding auxiliary variables and linear and semidefinite constraints. A weaker version of the method, denoted LS, only adds auxiliary variables and linear constraints.

A nice thing about the method is that, after you apply it to your initial relaxation, thus getting a tighter relaxation, you can then apply it again to the tighter one, thus getting an even better relaxation, and so on. Starting from an LP relaxation with $n$ variables and poly($n$) constraints, $k$ applications of the method yield a relaxation solvable in $n^{O(k)}$ time, which is polynomial for all fixed $k$ and sub-exponential for $k=o(n/log n)$. Lovasz and Schrijver prove that, after $k$ applications (or "rounds") the resulting relaxation enforces al inequalities over $k$-tuples of variables that are valid for 0/1 solutions. (In particular, one gets the combinatorial optimum after $n$ rounds.) Typical approaches in the design of approximation algorithms are SDP with local inequalities (triangle inequalities etc.), and this is all captured after a few rounds of LS+.

It would be great to show that no constant (ideally, no sublinear) number of rounds of LS+ starting from the basic LP relaxation gives a $2-\epsilon$ approximation for vertex cover. Arora, and others Bollobas and Lovasz considered related questions in a FOCS 2002 paper that has inspired a considerable amount of later work. (See the introduction of the journal version.) Unfortunately the question remains open evern for two rounds of LS+. After one round, one gets an SDP relaxation equivalent to (number of vertices minus) the Lovasz Theta function, and Goemans and Kleinberg prove that such SDP does not achieve approximation better than 2. Beyond that, it is pretty much terra incognita. Charikar proves that a relaxation with triangle inequalities (which is incomparable with two rounds of LS+ and is weaker than three rounds) does not achieve approximation better than 2. Also, a sublinear number of rounds of LS+ does not achieve approximation better than 7/6. For LS, which, I remind you, generates linear programming relaxations rather than semidefinite programming ones, we know that no sublinear number of rounds leads to an approximation better than 2.

I will illustrate the main idea in the LS and LS+ method using the example of Vertex Cover. In the linear programming formulation, we have variables $x_i$, one for each vertex $i$, and the constraints that $x_i + x_j \geq 1$ for each edge $(i,j)$ and that $0\leq x_i \leq 1$. We would like to add constraints that are only satisfied by 0/1 solutions, and the constraint $x_i^2 = x_i$ would work beautifully except that it is not linear (nor convex). Instead, Lovasz and Schrijver add new variables $y_{i,j}$, one for each pair of vertices, with the idea that we would like to have $y_{i,j}=x_i * x_j$; then they add the requirement $y_{i,i} = x_i$ and various inequalities that make the $y_{i,j}$ be "sort of like" $x_i*x_j$. In particular, we would like to require that if $x_k \neq 0$, then $x_i = y_{i,k}/x_k$. This is again a non-linear constraint, but, at least, we can check whether, for each fixed $k$, $y_{i,k}/x_k$ is a fractional vertex cover: we just need to check the inequalities $y_{i,k} + y_{j,k} \geq x_k$ for each edge $(i,j)$

Similarly, if $x_k \neq 1$, we expect to have $x_i = (x_i-y_{i,k})/(1-x_k)$. We cannot check it directly, but we can check if
$x_i - y_{i,k} + x_j - y_{j,k} \geq 1-x_k$
hold for each edge $(i,j)$. Finally, we obviously want $y_{i,j} = y_{j,i}$. This describe the LS method. For LS+, we add the requirement that the symmetric matrix $(y_{i,j})$ be positive semidefinite. Being positive semidefinite means that there are vectors $b_1,\ldots,b_n$ such that
$y_{i,j} = < b_i , b_j>$
where $<\cdot,\cdot>$ denotes inner product. If $y_{i,j} = x_i *x_j$ then $(y_{i,j})$ is clearly positive semidefinite.