## Thursday, August 03, 2006

### Natural Proofs

If we pick at random a function f:{0,1}n->{0,1}, then, very likely, f has circuit complexity at least about 2n/n. Can we derandomize this application of the probabilistic method, and construct such a function in time polynomial in the length of its representation, 2n? This is, of course, the question of whether we can prove exponential circuit lower bounds in E (the complexity class of problems solvable in time 2O(n)).

Consider now the following problems. (1) Given a multivariate polynomial p of degree d (specified as an algebraic circuit) defined over a field F of size > 2d, and assuming that p is not always zero, find an input on which p is not zero. We know that p is non-zero on at least half of the inputs, but is there an efficient deterministic algorithm for this problem? (2) With high probability, a random graph on n vertices has no clique and no independent set of size more than 2log n. Can we deterministically construct such a graph? (3) With high probability, a random d-regular graph on n vertices has very good expansion. Can we deterministically construct such graphs? (4) If we pick a random n x (rho * n) matrix over a finite field, it defines with high probability a linear error-correcting code with rate rho and with good minimum distance. Can we deterministically construct such codes?

There is a superficial similarity to all these problems. We are interested in combinatorial objects with a certain property, we know that a random object has the property with high probability, and we want to deterministically construct an object with the property. (In time polynomial in its size.)

One important distinction is whether or not the property that we are interested (or some good "approximation") is efficiently computable. For example, in the case of the polynomial identity testing problem, we know when an input makes a polynomial non-zero, and, regarding expanders, computing the eigenvalue gap of a given regular graph gives an approximation of its expansion.

If very strong pseudorandom generators (or even "hitting set" generators) exist, then one can solve these explicit construction problems simply by looking at all the possible outputs of the generators. One of them must satisfy the property. This is the argument that proves that all probabilistic algorithms (including, for example, polynomial identity testing) can be derandomized if very strong generators exist.

It would require major algorithmic breakthroughs, however, to certify strong upper bounds to the independence number of a random graph (I think that currently the best upper bound is sqrt(n), via spectral methods), or to certify that a random matrix defines a good linear code, or to certify that a random graph has expansion beyond the eigenvalue bound. It is unclear how to use a generator to solve these explicit construction problems. (Under suitable assumptions, we would still be guaranteed that one possible output of the generator has the property, but we would not know which one.)

What about checking whether a given function f:{0,1}n->{0,1} (think of it as a binary string of length N=2n) has high circuit complexity?

Razborov and Rudich prove the remarkable result that if suitably strong one-way functions (and, hence, pseudorandom generators) exist, then there is a distribution of functions f:{0,1}n->{0,1} (again, think of them as binary strings of length N=2n) concentrated on functions of circuit complexity at most nlog n, that is indistinguishable from the uniform distribution over all boolean functions f:{0,1}n->{0,1} for algorithms of running time poly(N) = 2O(n). This means that (assuming the existence of the appropriate one-way functions), the problem "given the truth table of a boolean function, compute its circuit complexity" is intractable and, in fact, even hard to approximate. Even more remarkably, the problem is hard-on-average, even just to approximate. It is perhaps the only natural problem that is known to be hard-on-average under standard assumptions.

To come back to our discussion, if strong pseudorandom generators exists, we cannot "derandomize" the problem of constructing a function of high circuit complexity by simply using a strong pseudorandom generator and then picking one
of the outputs. There is, however, a way to show that the existence of strong pseudorandom generators does indeed imply the ability to construct functions of high circuit complexity. Here the circularity may make you feel a bit dizzy, so let's move on to the reason why Razborov and Rudich proved their remarkable result.

Their observation was that in all the circuit lower bound arguments known at the time (for example, in the proof that parity has no AC0 circuit) one can recognize a certain pattern: one defines a property of functions which implies the circuit lower bound (in the case of the AC0 lower bound, the property of remaining non-constant after a large number of variables have been randomly fixed) and then proves that a specific function satisfies the property. Razborov and Rudich call such an argument a "natural proof" if (i) the property is computable in time 2O(n) and (ii) the property is true with noticeable probability for a random function. Their result rules out super-polynomial circuit lower bounds proved via a natural proof (assuming strong enough one-way functions). This is because the property used in the natural proof would be an efficiently computable distinguisher between the Razborov-Rudich distribution (which is made of functions of low circuit complexity, and so satisfies the property with probability zero) and the uniform distribution over functions (which is assumed to satify the property with noticeable probability).

More than ten years later, the only candidate technique for non-natural lower bounds is a combination of diagonalization (which tends to lead to non-natural arguments) and of non-relativizing characterizations of complexity classes (because diagonalization alone cannot prove non-relativizing results, and EXP has polynomial size circuits relative to an oracle). In particular, these are the ingredients used by Buhrman et al. in proving that there are problems in MAEXP and PEXP of superpolynomial circuit complexity, and by Vinodchandran to prove that, for every fixed k, PP has problems of circuit complexity more than nk.

It should be noted that we do know explicit constructions of expanders, Ramsey graphs and error-correcting codes whose properties are stronger than the properties that we know how to certify for random graphs and random matrices. Even though the analogy may be faulty, I think we should remain optimistic that we will eventually find a way to explicitly construct functions of high circuit complexity in EXP.

## Monday, July 31, 2006

### What good is O(log n)-approximation?

I have spent a good part of the last two years catching up on recent work on PCP, hardness of approximation, and approximation algorithms. Lately, this has been a spectacularly successful area of theory, from ARV and its many spin-offs, to the fantastically deep work around the unique games conjecture, to Irit Dinur's new approach to PCP, and so on. There is, however, a nagging question about this line of work. Given that, "in practice," one wants (and, often, achieves) approximations within a factor of 1% or 2%, where is all the excitement about having approximation log n versus (log n)1/2, or even 2 versus 1.5? Isn't this an entirely self-referential community that has nothing to offer to the practice of computing?

In his (beautifully written and highly recommended) book, Vijay Vazirani considers this question and gives the objective benchmark response.

In my own words, the point of the objective benchmark response is to observe that the service that theory can give to other communities is the development of ideas and techniques that are so counterintuitive and/or sophisticated that they would never occur to someone just working on a particular problem. Such ideas and techniques are the result of working in an idealized model (simplified problems, looking only for polynomial time algorithms, regardless of efficiency, focusing on worst-case approximation ratio) that, however far from reality, is objectively quantitative. If a new algorithm has a better approximation ratio than previous ones, then there must be something new in the algorithm, and, over time, whatever it is that is new will be understood, simplified, and distilled to the point of becoming a standard technique that can be used in practice. I assume that there are good stories to go with this argument. (Primal-dual algorithms? Graph-partitioning followed by dynamic programming?) Incidentally, this argument suggests that one should be more interested in an algorithm that barely matches known bounds but that works in a radically new way, than in an algorithm that shaves a loglog n factor by a new combination of known methods plus some case analysis.

I think, however, than one can give a slightly different response. Isn't it true that in practice we want 2% approximation? Exactly!, I would say. But if we want to prove that our efficient algorithm achieves such approximation, we can't, because PCP results forbid it. Plus, for specific algorithms, we know how to construct inputs on which the algorithm performs very badly. And there is now an intriguing convergence between the kind of inputs constructed as worst cases of specific algorithms (such as linear and semidefinite programs) and the kind of inputs constructed as gadgets for PCP constructions. So we have an increasingly clear idea of what inputs are hard. This can be an excellent starting point for reasoning about algorithms. Once we know that graphs with property P are very bad for known algorithms and come out of PCP constructions, we can think of algorithms that work on anti-P graphs, and the insights developed in designing algorithms for general graphs, in finding hard instances, and constructing PCPs, might help us understand how algorithms work on anti-P graphs. Those anti-P graphs, in turn, might include most of the inputs that come up in practice. (More later on this point.)

There is at least one story to go with this argument, and it's Sanjeev Arora's lack of success in proving a PCP hardness for TSP in the plane, that led him to try to understand what a PCP gadget for TSP should look like, that led him to conclude that no such gadget could be embedded in the plane, because of a property of geometric instances that was the starting point of his approximation scheme! (See Arora's paper.)

Lately, several researches have been working simultaneously on inapproximability and on approximation algorithms, and I hope that we will see more positive consequences of the understanding gained from lower bounds.

Another standard objection to our way of studying algorithms is the emphasis on worst case, while "in practice" one is happy enough with algorithms that are good on "most" inputs. Here I have never been satisfied with the pessimism response that we don't know what distribution of inputs will be typical in applications, so it is good (and more reliable) to focus on worst-case performance. The recent work on smoothed analysis is certainly a good indication that the theory community can say interesting and rigorous things about random inputs.

There is, however, a different line of work that I would like to see. For example, there is now an understanding that "typical" networks have a power-law degree distribution and there are random models for them which are considered adequate and predictive. Wouldn't it be great to have approximation algorithms for routing and other problems analysed on those distributions? Especially if the analysis had the following modular structure: (1) we understand how worst-case instances look like for important network problem X; (2) by reasoning about networks that are very far from such worst-cases, we develop an algorithm for X that has outstanding performance on graphs with property Y; (3) graphs sampled from model Z of power-law graphs have property Y with very high probability.

Update 8/1/06: David Johnson points out that there is a body of recent work showing discrepancies between the topology of real networks and the topologies generated by popular models of power-law graphs. For example, the graphs in the probabilistic model have smaller vertex-connectivity than real networks (which are designed to be fault-tolerant). Here is one early paper about this.